
LANdini: a networking utility for wireless LAN-based laptop ensembles

Jascha Narveson
Princeton University

narveson@princeton.edu

Dr. Dan Trueman
Princeton University

dtrueman@princeton.edu

ABSTRACT

Problems with OSC communication over wireless routers
are summarized and the idea of a separate networking util-
ity named LANdini is introduced. LANdini’s models and
current structure are explained, and data from tests is pre-
sented. Future improvements are listed.

1. BACKGROUND MOTIVATION

1.1 Wireless routers are good

The two laptop ensembles of which we are a part - the
Princeton Laptop Ensemble (PLOrk) and Sideband - both
use wireless routers for group networking. This is a de-
cision based on convenience and logistics: not having to
worry about cables dramatically reduces set-up and take-
down time for performances and rehearsals, and makes it
easy to scale the ensemble up or down in size. In the case
of PLOrk, which has at times exceeded 30 simultaneous
performers, these are extremely valuable features. Avoid-
ing networking cables also allows for a freedom of loca-
tion, both on a performer basis (up in balconies, spread
out around the audience, etc...), and on an ensemble basis
(such as playing out-doors or in non-traditional venues).
Even confined to on-stage setups, the presence of cables
can impede fluid re-arrangement of performer stations from
piece to piece, which is a common element in both PLOrk
and Sideband concerts. In order to stay as flexible as possi-
ble, both PLOrk and Sideband intend to use wireless routers
for the foreseeable future.

1.2 Wireless routers are bad

As a trade-off for all of the logistical convenience afforded
by wireless routers, PLOrk and Sideband have had to deal
with the less reliable performance of UDP protocols over
wireless systems for OSC [1] communication, as well as
the propensity of routers to occasionally drop users from
the network. Latency and dropped packets have been a
constant source of trouble for any piece in our repertoire
that uses networking and, while some pieces can suffer a
dropped packet and/or timing inconsistencies, others may
be structured such that enough networking errors result
in the piece failing. This is a well-known fact amongst

Copyright: c©2013 Jascha Narveson et al. This is

an open-access article distributed under the terms of the

Creative Commons Attribution 3.0 Unported License, which permits unre-

stricted use, distribution, and reproduction in any medium, provided the original

author and source are credited.

laptop-ensemble musicians, and has been the subject of
other academic inquiries [2]. Because of this, ensembles
such as LSU’s LOL and Virginia Tech’s L2Ork choose to
make the tradeoff in the other direction and perform with a
wired router and a mass of ethernet cables [3, 4].

1.3 Previous solutions have left us unsatisfied

Composers who have worked with PLOrk and Sideband
have approached the problems of wireless unreliability in
different ways from piece to piece:

• To deal with dropped packets, some pieces take a
shotgun approach by sending redundant OSC mes-
sages in short bursts in hopes that one of them will
make it to its destination. This method is not guaran-
teed to work, and has the potential to create a lot of
overhead, depending on the number and density of
messages that need to be transmitted in this fashion.

• For network sync, some pieces have tried a simple
server-side broadcast which either gets picked up or
not on the client computers, with predictable results
in terms of reliability and timing. Other pieces have
employed versions of Cristian’s algorithm [1] to co-
ordinate execution time across different computers,
and these solutions are often paired with the shot-
gun approach to set up timed messages in a network,
again with imperfect results.

• Pieces requiring a specific spatial ordering of the
players often require the players to select their user
number manually before launching the patch - in
one memorable case, a guest composer had written a
piece that required everyone to change the network
sharing name of their laptop to an integer and re-
log-in in order to run the piece!

All of the methods above (with the exception of the user-
name change) have worked well enough for composers to
keep using them, but the current situation has three main
drawbacks:

• Composers are wasting time solving problems of user-
list maintenance, reliable message delivery, and use-
able timing anew with each piece. PLOrk and Side-
band have both experienced lost rehearsal time and
significant individual coding-time because of these
problems.

• In addition to regular idiosyncratic behavior within
the piece itself, each composer’s approach to solving

mailto:narveson@princeton.edu
mailto:dtrueman@princeton.edu
http://creativecommons.org/licenses/by/3.0/


the above mentioned networking issues potentially
introduces another layer of erratic behavior.

• Composers sometimes avoid certain networking strate-
gies altogether for fear of failure in a live situation.
While this is pragmatic, this is obviously bad for the
state of the art as a whole.

2. A PROPOSED SOLUTION

A solution to the above situation is to relegate all network-
ing duties to a separate application which would run in the
background for the duration of a rehearsal or concert. This
modular approach directly addresses the three problems
listed at the end of the previous section:

• Composers would no longer need to worry about
how to deal with networking problems.

• Faults with basic networking issues would be eas-
ily traceable back to one common application. As-
suming a stable enough application, this would make
networking problems both rarer and easier to address
as they come up.

• Composers could feel free to explore uses of net-
working that had hitherto felt too risky or compli-
cated.

Our current attempt at addressing these problems is a
software utility we’ve named LANdini. It is still in an early
stage of development, but has to date been used in perfor-
mance three times with encouraging results. It addresses
issues with delivery and timing, as well as implementing
some extra features that we thought would be useful, such
as the “stage map” (see section 3.8).

2.1 Pre-existing solutions

There are other laptop ensembles who have also worked
on solutions. One prominent example is OSCthulhu [5],
a similarly motivated application developed by the group
Glitch Lich (in particular Curtis McKinney). Its absence
of clear documentation was an initial hurdle in its being
adopted, but it also focussed on a state-based model of in-
formation flow which we didn’t feel drawn to, and lacked
some of the features which we envisioned, such as the
“stage map” feature (see section 3.8).

Neil Cosgrove’s LNX Studio [6] is quite a different type
of application, being a collaborative music making envi-
ronment that can work over LANs and internet connec-
tions. It’s extremely well implemented, but it isn’t de-
signed to be a networking utility. What it does have is an
impressively resilient network sync and message delivery
system and excellent network time synchronization. It also
boasts admirably open source code, and many of the fea-
tures of LANdini were the result of studying and adapting
solutions that were used in LNX Studio.

Ross Bencina’s OSCGroups [7] is a core component of
LNX Studio, but in that context is used for internet con-
nections, which it was primarily designed for. Neil Cos-
grove’s code for LAN connections uses classes of his own

making which feature the same API. Since the authors of
this paper are interested in LAN-based music, we elected
to follow Neil Cosgrove’s example and implement our own
solutions, leaving OSCGroups to those who are working
over internet connections.

3. LANDINI’S IMPLEMENTATION

The following is a list of features that we felt would be
reasonable demands to make of any networking utility that
was going to be truly useful, along with explanation of
how they are currently implemented in LANdini. It should
be noted that, while LANdini was developed primarily for
wireless networks, some of the features described could be
useful for laptop ensembles on wired networks as well.

3.1 Self-contained

LANdini is a simple double-clickable application that doesn’t
require any extra installs. At the moment, LANdini is im-
plemented in SuperCollider [8] to run on Mac OS 10.6+.
SuperCollider was used because it was the language Narve-
son knew best, it has the potential of being cross-platform
(though this hasn’t been implemented and tested, due to
a lack of Linux and PC machines), and it is easy to cre-
ate stand-alone applications. SuperCollider doesn’t cur-
rently support sending OSC via TCP, so UDP was used,
and TCP-style behavior implemented directly. Narveson
suspects this is better than the built-in latency that comes
with TCP, but a parallel version in a TCP-enabled language
would need to be tested to be sure.

3.2 No client/server differentiation

For simplicity and flexibility, LANdini is the same on each
computer in the ensemble. In this way, members of the
group can simply start LANdini at the beginning of a ses-
sion and then let it run without worrying about having an
extra server laptop on hand.

3.3 Dynamic user list

Each running copy of LANdini maintains a dynamically
updated list. The details of how this is done are summa-
rized in Figure 1, but involves each user broadcasting their
name, ip, and port number once per second, and using in-
coming messages from other users to assemble a list of
active LAN participants. Each user replies with a copy of
their entire list, so that the sender of the original broad-
cast message can compare and add any users they haven’t
detected yet.

Once connected, each user creates local user profiles of
everyone on the network and sends regular status pings to
everyone on their user list. These pings contain positional
information as well as info pertinent to the “guaranteed de-
livery” and “ordered guaranteed delivery” protocols (see
sections 3.5 and 3.6 for details on the message protocols
and status pings, respectively). The most recent ping time
is also stored and used for removing that user from the list
if too much time elapses without an update. This is cur-
rently set to 2 seconds, but can be adjusted.



Local applications can ask LANdini for a copy of the cur-
rent user list either as a simple set of names or as a “stage
map,” as described below in section 3.8.

3.4 Minimal change to pre-existing OSC messages

In order to facilitate the updating of old pieces and the
happy adoption of LANdini in to new pieces, we wanted to
change as little as possible about the way OSC messages
were sent and received by composers’ patches.

Incoming OSC messages are, from the perspective of the
receiving patch, completely unchanged, requiring no up-
dating in the composer’s code.

Outgoing OSC messages are sent through LANdini and
are simply prefaced with two extra strings: a protocol and
a destination. The protocol tells LANdini how to send the
message, and the destination tells LANdini where to send
the message. Other outgoing OSC messages are sent to
LANdini to request specific information, like the current
network time or user list.

3.5 Message protocols for different tasks

LANdini uses three message protocols that are based off
of a subset of the many to be found in Neil Cosgrove’s
LNX Studio, mentioned above (see 2.1). In adopting the
code, changes were made to accommodate the different in-
ternal organization of LANdini’s data structures, but the
general strategies are similar. Each protocol is referred to
by a name that is used as a prefix in outgoing OSC mes-
sages from locally running applications:

• /send - this is just normal OSC

• /send/GD - this is the “guaranteed delivery” method,
which indexes outgoing messages and stores local
copies in a look-up dictionary in order to re-send
upon request. Messages known to have been safely
received are deleted on the sending computer, to save
memory. A more detailed summary can be seen in
Figure 2.

• /send/OGD - this is the “ordered guaranteed de-
livery” method, which works in a manner similar to
/send/GD, with the addition that incoming mes-
sages are stored in an intermediate queue and passed
on to the local application strictly in order. As above,
the sending computer deletes messages that are known
to have arrived safely, and the receiving computer
deletes messages as they’re performed and leave the
queue.

3.6 Status Pings

The network’s current state is maintained through frequent
status pings that are sent between all active users who are
running LANdini. At the time of writing, these pings de-
fault to 3 pings per second. A breakdown of the contents
of the ping and how they’re used is provided below:

• name: The sender’s name is used so that the receiver
can put the rest of the info in to the appropriate user

profile. All variables mentioned below are stored
in the receiver’s user profile for that particular
sender and appear in bold - analogous ones exist
for every separate user profile on the receiver’s ma-
chine. The underscores used in the variable names
have been omitted for formatting purposes.

• update position: The sender sends an updated cur-
rent x/y location on the “stage map” (see section 3.8)

• check /send/GD IDs:

– The sender includes the ID of the last outgo-
ing /send/GD ID they sent the receiver. This
is compared against the receiver’s last incom-
ing GD ID variable: if their last outgoing ID
is bigger, last incoming GD ID is updated to
equal it.

– The ID of the /send/GDmessage beneath which
all other messages have been safely received
is included so that the receiver can delete lo-
cally stored copies of those messages it sent
the sender. This keeps memory usage at a min-
imum.

– The receiver looks at all the IDs in the range
from (min GD + 1) to last incoming GD ID,
and ask for re-sends of the ones whose IDs
don’t appear in the performed GD IDs list.

• check /send/OGD IDs:

– The sender includes the ID of the last /send/OGD
from the receiver that they performed, allow-
ing the receiver to delete locally stored copies
of those messages.

– The ID of the last /send/OGD the sender sent
the receiver is compared to the receiver’s last
performed OGD ID. As above, all IDs be-
tween the receiver’s last performed OGD ID
and the sender’s last sent /OGD ID are col-
lected, and ones that don’t appear in the re-
ceiver’s msg queue for OGD are requested to
be re-sent.

• check network time server: Every status ping mes-
sage includes the name of the current network time
server. In the event that the network time server
leaves the group, the next user in alphabetical order
is automatically chosen to take up the role. There
is no deep reason for choosing alphabetical order as
the organizing principle for this role: better methods
will be explored and implemented in future versions
of LANdini.

3.7 Synched network time

LANdini automatically establishes a shared network time
on boot. At the moment, this is a simple implementation
of Cristian’s algorithm (see Figure 3), with the commonly
added refinement of using the shortest recorded round-trip
time. Once more than one player is on the network, the



Figure 1. how LANdini assembles a user list

user with the first name in alphabetical order becomes the
network time server. If this server goes offline, the next
highest in alphabetical order takes over with minimal in-
terruption. Network time can be polled and used as a ref-
erence when sending messages that need to be executed at
a certain point in the future.

3.8 Stage Map

This feature is, to our knowledge, unique to LANdini. Up
until this point, composers have required players to choose
a player number at the startup of their patch; this is clearly
vulnerable to human error, and can result in lost rehearsal
time or incorrect performances with missing and/or redun-
dant parts. Moreover, requiring players to choose a player
number doesn’t necessarily scale well - some patches are
hard wired to expect N number of players, sometimes with
no better reason than the server needing to know ahead of
time how many players there are.

LANdini’s stage map window (when opened) represents
each user on the LAN with a simple named square. Imag-
ining the window to represent the stage or area they’re in,
users arrange themselves in the window in relation to the
other LAN members. This information is updated through
the regular ping messages, and is therefore always current.
Local applications can request a copy of the stage map as
an OSC message containing ordered triples of name/x/y for
each user. Once this data is received, it can be sorted and
used to send commands to the ensemble in whatever order
the local application specifies: left-to-right, front-to-back,
or other, more subtle constructions, such as those found in

Gil Weinberg’s paper on network topologies [9].
Asking users to arrange themselves on the stage-map is

also vulnerable to human error, of course; the thinking here
is that having the ensemble do this at the start of a perfor-
mance is safer and more convenient than choosing player
numbers for every piece that requires a specific order.

3.9 Traffic monitoring windows

LANdini has windows for monitoring incoming OSC traf-
fic on both the local and LAN ports. Text fields on the top
of the windows allow users to filter the displayed messages
by typing the text of the relevant messages, allowing users
to search for specific messages. For instance, if one was in-
terested only in seeing messages sent from a performance
patch that used the OSC path texttt/drums, typing drums
in the filter would cause all other messages to stop being
printed. This is useful functionality for debugging.

4. PERFORMANCE

At the moment, LANdini has been used in several rehearsals
and three concerts, with encouraging results. Background
network traffic for the upkeep of the user lists and user sta-
tus peaked at about 17 KB/sec for a group of 8 laptops,
which is acceptably light background usage. As of this
writing there has been no chance to test LANdini with a
large group of 20+ laptops, although this is a necessary
and planned future step.

Narveson did run a smaller-scale test, the results of which
are summarized in Figure 4. The test consisted of four



Figure 2. LANdini’s /send/GD protocol



Figure 3. LANdini’s simplified version of Cristian’s Algorithm

rounds, one for regular OSC without LANdini, and one
each for LANdini’s /send, /send/GD, and /send/OGD
protocols. The tests were performed with a D-Link Dir655
router (802.11n, 2.4Ghz), a 15” MacBookPro from 2011
running OS 10.8.2 as the server, and two 13” white plas-
tic MacBooks from 2009 running OS 10.6.8 as the clients.
Each round consisted of 50 tests of 1000 messages from
a server laptop to two client laptops. The tests were sim-
ple patches written in SuperCollider - each round of 1000
messages was separated by 3 seconds, and the messages
themselves used a 5ms spacing. The test patches recorded
message ID, protocol, and arrival time.

The results show a clear performance advantage to using
the /send/GD and /send/OGD protocols, which man-
aged a 100% arrival rate without any appreciable cost in
terms of average message spacing or total time between
the arrival of messages 1 and 1000 in a given test. As ex-
pected, regular non-LANdini OSC and LANdini’s /send
protocol were matched in performance, with an arrival rate
in the mid-to-high 90% range, depending on the machine.

The chart in the bottom left of Figure 4 shows outliers
for the between-message deltas in these tests, reaching 1.4
seconds for the /send/OGD protocol on machine B in the
worst case. This points to further work that needs to be
done to make timing issues more reliable.

A positive side-effect of the LANdini GUI is that rehearsals
and concerts are sped up by making it easy to confirm that
everybody is on the network simply by looking at the user
list. Previously, connection problems only showed up once
we started playing and noticed unresponsive behavior.

5. EXAMPLE IMPLEMENTATIONS

As of this writing, three pieces in our repertoire have been
converted to make use of LANdini - below are short sum-
maries of how this has worked so far.

5.1 Beepsh

Narveson’s piece Beepsh involves the group passing around
pitch and rhythm sequences. The pre-LANdini implemen-
tation used its own method for establishing the player list
and for establishing group pulse synchronization. The new
version uses LANdini to get the list of available partici-
pants, and uses the simple /send protocol and network
time for sending out the rapid pulse metronome messages.
Pulses are scheduled for half a pulse of latency using LAN-
dini’s network time, and this provides good synchroniza-
tion. The /send/GD protocol is used for players to update
the server about the beginning and end of their sequences,
since these are more important pieces of information. The
Stage Map functionality makes easy to arrange the player
messages in order so that sequences can be heard traveling
around the group from one side of the stage to the other.

5.2 In Line

Narveson’s other piece, In Line, also involves group synch.
In this case, a regular metronomic pulse at 1 pulse/second
is sent to the entire group using the /send protocol with a
scheduling latency of 100ms, which performs well. Ear-
lier versions of this piece relied on setting up an inter-
nal metronome which would be constantly corrected by
/pulse messages from the Server as they came in, which
resulted in occasional jitter. Other, crucial messages about
state-change in certain players are handled using the /send/GD



Figure 4. Test results for 50 bursts of 1000 OSC messages at 5ms intervals using four protocols across two machines



protocol, again with very encouraging results; earlier ver-
sions of the piece relied on a “shotgun” approach to ensur-
ing the arrival of these messages, with occasional glitches.
This piece has a history of crashing the router, which the
current LANdini-enabled version has not done to date.

5.3 CMMV

Trueman’s piece CMMV also uses a mixture of /send
and /send/GD protocols, the former for time-sensitive
beat information and the latter for less time-sensitive but
musically important pitch information. Again, the perfor-
mance of both has been very encouraging, with noticeable
savings in rehearsal time due to the absence of networking
problems.

5.4 Linked List test

Trueman has long tried to implement a simple “linked list”
style OSC test in ChucK [10] in which two (or more) com-
puters on a LAN pass a “play” message around a list: com-
puters wait for the message and then, upon receiving it,
play a simple sound and send a “play” message to the next
user on the list. This deceptively simple test has so far
failed to work, likely due to dropped packets. Using LAN-
dini’s /send/GD protocol solves this particular issue and
enables the test to run smoothly.

6. FUTURE WORK

LANdini is currently being developed in SuperCollider,
though porting it to other languages and environments is
something that could be done if the need arose. One immi-
nent future application is a port to iOS for Daniel Iglesia’s
new mobile music platform MobMuPlat [11].

There is currently a SuperCollider class - LANdiniWatcher.sc
- which takes care of regularly polling LANdini for net-
work time and user list info. This has the advantage of
saving composers working in SuperCollider the need to
setting up their own OSC loops to and from LANdinin
to access network information, thus cutting down on time
and potential problems with implementation from piece to
piece. Skeletal classes for Max and ChucK exist which
currently handle polling for network time, but need to be
fleshed out to handle the “stage map” information.

While LANdini has been used in performance with 8-9
players, it has yet to carefully tested with groups that size
or larger. Testing large group sizes is important because
LANdini’s background traffic currently grows in quadratic
time: a group of size N sees (N * (N-1)) ping messages be-
ing sent every ping interval, which is set to 3 pings/second
by default. For a group of 8 people this results in 8*7*3
= 168 pings per second - for 10 people that number goes
up to 270 pings/sec, and, for 30 people, it would be 2610
pings/sec (!). Alternatives that get LANdini closer to “N
log N” performance are clearly required, either in the form
of automatic or manual throttles to the status ping frequency,
a dynamic centralized server model (as is currently the case
with network time, as explained in section 3.7), or some-
thing else entirely. In general, more tests related to timing
and latency need to be done, as well.

At the time of writing, /send/GD looks for missing
messages at each status ping, whereas /send/OGD looks
for missing messages at the receipt of each new message.
This should be changed since /send/GD currently shows
marginally slower total-completion times than /send/OGD
(see Figure 4).

Improvements to the implementation of synced network
time include possible tweaks to the algorithm and the ad-
dition of visual feedback on the GUI about which machine
is currently the time server. A manual over-ride of this
function should be implemented in the event that the cur-
rent time server machine is faulty in some way. As already
stated, using alphabetical order as an organizing principle
for determining the time server is an ad-hoc solution, and
better methods need to be explored and implemented.

7. REFERENCES

[1] M. Wright, A. Freed, and A. Momeni, “Open sound
control: State of the art 2003,” in International Confer-
ence on New Interfaces for Musical Expression, Mon-
treal, 2003, pp. 153–159.

[2] M. M. Cerqueira, “Synchronization over networks
for live laptop music performance,” 2010, senior
thesis for Princeton University. [Online]. Available:
http://lorknet.cs.princeton.edu/cerqueira thesis.pdf

[3] S. D. Beck, August 2011, private communication.

[4] I. I. Bukvic, September 2011, private communication.

[5] C. McKinney and C. McKinney, “Oscthulhu: Apply-
ing video game state-based synchronization to network
computer music,” in Proceedings of the 2012 Interna-
tional Computer Music Conference, Ann Arbor, MI:
MPublishing, University of Michigan Library, 2012.

[6] N. Cosgrove, “LNX Studio, version 1.4,” 2012,
open source software. [Online]. Available: http:
//lnxstudio.sourceforge.net

[7] R. Bencina, “Oscgroups,” 2005, software utility. [On-
line]. Available: http://www.rossbencina.com/code/
oscgroups

[8] J. McCartney, “Rethinking the computer music lan-
guage: Supercollider,” Computer Music Journal,
vol. 26, pp. 61–68, 2002.

[9] G. Weinberg, “Interconnected musical networks: To-
ward a theoretical framework,” Computer Music Jour-
nal, vol. 29, pp. 23–39, 2005.

[10] G. Wang and P. Cook, “Chuck: A concurrent, on-
the-fly, audio programming language,” in Proceedings
of the 2003 International Computer Music Confer-
ence, San Francisco, California: International Com-
puter Music Association, 2003, pp. 219–226.

[11] D. Iglesia, “Mobmuplat,” 2013, mobile music platform
for iOS. [Online]. Available: http://mobmuplat.com

http://lorknet.cs.princeton.edu/cerqueira_thesis.pdf
http://lnxstudio.sourceforge.net
http://lnxstudio.sourceforge.net
http://www.rossbencina.com/code/oscgroups
http://www.rossbencina.com/code/oscgroups
http://mobmuplat.com

	 1. Background Motivation
	1.1 Wireless routers are good
	1.2 Wireless routers are bad
	1.3 Previous solutions have left us unsatisfied

	 2. A proposed solution
	2.1 Pre-existing solutions

	 3. LANdini's implementation
	3.1 Self-contained
	3.2 No client/server differentiation
	3.3 Dynamic user list
	3.4 Minimal change to pre-existing OSC messages
	3.5 Message protocols for different tasks
	3.6 Status Pings
	3.7 Synched network time
	3.8 Stage Map
	3.9 Traffic monitoring windows

	 4. Performance
	 5. Example implementations
	5.1 Beepsh
	5.2 In Line
	5.3 CMMV
	5.4 Linked List test

	 6. Future work
	 7. References

